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Scope of.Extended Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1, 1967.

Results obtained through August, 1967 are summarized in

"Phase I Report under Contract NAS2-4151" of September, 1967.

Subject contract was extended through July, 1968. The main

purpose of the extended contract was to check the validity of

the approximate digital method for computing the response of

blade flapping to random inputs, tentatively suggested in

Phase I Report, by comparison with NASA conducted simulator

studies, to develop alternate methods if required and to

extend the analysis to higher rotor advance ratios. This

report summarizes the results obtained since September, 1967

through July, 1968, during which period 12.9 man-months were

expended.
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Concepts for a Theoretical and Experimental

Study of Lifting Rotor Random Loads

and Vibrations

(Phase II)

by Kurt H. Hohenemser

and Gopal H. Gaonkar

Washington University, St. Louis, Missouri

Abstract:

A comparison with NASA conducted simulator studies has shown

that the approximate digital method for computing rotor blade

flapping responses to random inputs, tentatively suggested in

Phase I Report, gives with increasing rotor advance ratio

the wrong trend. Consequently, three alternative methods of

solution have been considered and are described in this report.

An approximate method based on the functional relation between

input and output double frequency spectra, a numerical method

based on the system responses to deterministic inputs and a

perturbation approach. Among these the perturbation method

requires the least amount of computation and has been

developed in two forms - the first form to obtain the response

correlation function and the second for the time averaged
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spectra of flapping oscillations. The range of validity of

the first form has been ascertained by a comparison between

the Runga-Kutta and perturbation response values to harmonic

inputs and that of the second form by comparing the time averaged

response spectra values obtained from the perturbation method

and the NASA conducted simulator results. Such comparisons

indicate that the perturbation scheme should provide reasonable

approximations up to a rotor advance ratio of.one at a Lock

blade inertia number of four.
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Notation

x = E [x] Expected value of sample x

E [f(x)] Expected value of sample function f(x)

x I = x 1 (tl),x 2 = x2 (t 2 ) Values of sample function x(t) at

times tI and t2 respectively

t Time

T = t 2 - t I  Time difference

t + t
t = 2 Average time

Rxy(tI' t2 ) Cross-correlation function between

sample time functions x(tl) and y(t2)

= Frequency

Af Frequency interval

X(f) Fourier transform of sample

function x(t)

Sxy(f l f 2) = E [X*(f I )Y(f2) Cross-correlation function

between sample frequency functions

X (fl) and Y(f2 ), also called

power spectral density

h(r) Unit impulse response function

H(f) Frequency response function
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F Modulating frequency

.Qo Rotor angular velocity

SAdvance ratio

8 Blade flapping angle, positive up

a Mean blade angle of attack

S- (f) Power spectral density of mean

angle of attack

S- (f) Average power spectral density of

blade flapping angle

A(t) Right hand side deterministic function

y(C,t) Response of the system to the input eiWt

yA (w ,t) Response of the system to the

input A(t)eiWt

yc(, t) Real part of y(w,t)

ys( w,t) Imaginary part of y(w,t)

YAc (  ,t) Real part of yA(a ,t)

YAs( ,t) Imaginary part of y(t,t)
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C1 ,c2 ,d1 and d2  Constants associated with the

left hand side of the blade

flapping equation

ao,al,a 2 ... ,b 1 ,b 2 ... Constants associated with A(t)

B(f) Fourier transform of 6 (t)

A(f) Fourier transform of (t)

Superscripts:

Conjugate complex

Time differentiation

Time average
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1. Introduction

Of the various complications encountered when trying

to apply to lifting rotors the stochastic methods developed

to analyze airplane responses to atmospheric turbulence,

we are concerned in this Phase II Report only with the time

varying character of the system and of the random input.

Though the theory is developed in a more general form

applicable to the response of time varying linear systems 
to

certain types of non-stationary random inputs, the application

is to the flapping response of rigid blades hinged to a rigidly

supported hub. The blades represent in forward flight an

approximately linear system with time variable periodic 
stiffness

and damping. Because of the periodically varying relative

flow velocity occurring in forward flight of the lifting rotor,

the aerodynamic excitation of the blades cannot be represented

by a stationary random process as in the case of frozen wing

aircraft, but must be described as a non-stationary stochastic

input.

Non-stationary random inputs have been analyzed for a

few engineering applications, for example for the response of

airframes to random runway disturbances during decelerations

after touchdown, Ref. (1), for the description of strong motion

random earthquake excitation, Ref. (2), and for the response of

spacecraft to time varying random excitations during the

launching phase, Ref. (3). In these applications the system

had constant parameters and could be represented by a time

invariable transfer function. A flapping blade of a lifting

rotor, however, because of the time variable periodic parameters,

cannot be represented by such a time invariable transfer 
function.

The general theory of non-stationary stochastic processes

has been well established as a direct extension of the corres-

ponding theory of stationary random processes, References (4),

(5), (6), (7). Rigorous solutions of responses to non-stationary

random inputs thus far available are, however, restricted to

constant parameter systems, References (6), (8). The complexity
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of the analysis is due to the fact that, except in very special

cases, closed form solutions valid over large time intervals

do not as yet exist for differential equations with variable

coefficients.. When it is possible to find a rigorous solution,

as in the case of the Bessel differential equation, the

quadrature operations required to obtain for example the

response auto-correlation function are quite involved even for

stationary random inputs, Ref. (8).

Since our literature survey has not uncovered prior

work toward solving the response of a linear system with time

variable parameters under non-stationary stochastic loading,

an approximate method for moderate advance ratio was suggested

in Phase I Report according to which it was assumed that

both the excitation and the response can be considered to be a

stationary random process modulated by a deterministic time

function. It was further assumed that the general equation

between the two-frequency input and output power spectral

densities could be approximately solved as far as the time

averaged single frequency response spectrum is concerned,

by ignoring the relations between the diagonal and off-diagonal

terms of the two-frequency power spectra and by considering

only the relation between the diagonal terms of the input and

response spectra.

Since submitting Phase I Report consistent data have

been received from the Simulator Computer Systems Branch

of the NASA Ames Research Center, where the problem of random

blade flapping response at various advance ratios had been

simulated upon our request. When comparing the time averaged

single frequency power spectra from the simulator study with

the equivalent data from the approximate digital method suggested

in Phase I Report, it was'found that this method resulted with

increasing rotor advance ratio in the wrong trend, so that the

method cannot be accepted as an approximation.
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Efforts were then directed toward solving the general

equation between the two-frequency input and output power

spectral densities including the relations between diagonal

and off-diagonal terms. However, even for rather crude dis-

cretization of this functional equation one must obtain a

computer solution for many hundred simultaneous linear equations

between complex variables. It was found that a first computer

program established for this purpose did not yield convergence

of the iterations and this attempt was then suspended, though

further work on the computer program might still lead to a

success.

Next it was considered to obtain a solution based

on the response to deterministic inputs.assuming zero initial

displacement and rate of displacement. Once such response

time histories have been obtained for a sufficient number of

frequency intervals, it is a simple matter of a frequency

quadrature to obtain time variable response mean square values.

It was finally decided, before attempting an entirely

numerical solution, to develop a perturbation method of solution

which is an approximate analytical method for cases where

the time varying parameters in the differential equations do

not differ very much from their time mean. A numerical solution

of the deterministic response problem with its inherent

computer costs can then be avoided.

Much of the reliability of the perturbation method

within its range of applicability stems from the fact that it

repeatedly deals with constant parameter systems for different

known inputs.

Numerical evaluations in this report are concerned

with the determination of the range of validity of the

perturbation method and its application to the problem of

random rigid blade flapping.
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2. General Relations and Concepts.for Non-Stationary Random

Processes

Non-stationary random processes can be represented

either by a double frequency power spectrum or in some cases

by an instantaneous time varying spectrum. In the first two

sub-sections these two important concepts are briefly discussed.

The third sub-section deals with a particular non-stationary

random process obtained by modulation of a stationary process

with a deterministic time function. In the subsequent section

on random response analyses it will be assumed that the non-

stationary input is of this form.

2.1 Double Frequency Spectra

The general relations between correlation functions

and power spectral densities have been discussed in Phase I

Report Section 2.1. For two non-stationary random processes

with sample functions x(t), y(t) having zero means and having

the sample Fourier transforms X(f), Y(f) the cross-correlation

function is given by

Rx (tlt 2) = E x(tl)Y(t 2)] = Sxy(fl f2 )e-1i2(fltl - f2t2) dfdf2

2.1

and the cross-power spectral density is given by the inverse of

eqn. 2.1

Sxy(f 1 2 ) = E [*(f)Y(f2
)]  = Rxy(tt 2 )ei2(flt - f2t2)dt1 dt2

-wO
2.2

For a single non-stationary random process with sample function x(t),

autocorrelation function x (t',t 2 ) and power spectral density

Sx(f 1 f2
) are related by

Rx(tl,t 2 ) = E x(tl)x(t 2 )] = Sx (fl,f 2)e-1i2(flt1 - f2t 2)dfdf2

-2.3
2.3
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and its inverse

Sx(f, 2 ) = E [X(fl)X(f2 =fRx(tl,t2 )ei2 lt - f2t2)dtdt2

-co 2.4

The spectral function Sx(flr 2 ) is in general for any combination

of frequencies fl'f2 a complex number and not physically realizable.

For weakly stationary random processes

Rx(t1't 2 ) = Rx(t 2 - t1 ) 2.5

Sxf1f2) = S2
1  2 )

= 6(f2 - fl) 2.6

where 6(--,) is the Dirac delta function with properties

6(t) = 0 if t 0

d(t) =c if t = 0 2.7

f(t)dt = 6(t)dt = 1, )>0

so that for a function 0(t):

tt - t) *(t)dt = 5(t0 ) 2.8

Inserting 2.5 to 2.7 in eqn. 2.3 and 2.4 one obtains with

t2 - t1 = and fl = f2 = f

Rx(7) = E [x(tl)x(t2) =_ Sx(f )ei2 frdf 2.9

-fx 2.10
00

S(f) = E X*(f)X(] = fR( )e-127f"Td 2.10
-0o

Since X*(f)X(f) is real, the spectral function Sx(f) is also

real and physically realizable.
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2.2 Instantaneous and Time Averaged Spectra

In Phase I Report a specific example of a time averaged

power spectrum was given in Section 2.3. Here the general

concepts of instantaneous and time averaged power spectra will

be discussed. In the definition of the double frequency power

spectral density, eqn. 2.4, it is assumed that the" sample

functions x(t) are defined over an infinite time interval,

though in actuality one has available only sample records

observed over a finite duration. Furthermore, the double

frequency spectrum is not a physically realizable quantity.

The concept of an instantaneous power spectrum, Ref. ( 9),

defined over a finite time interval and then time averaged,

resulting in a physically realizable single frequency spectrum,

allows to establish a relation between field observations and

the theory of non-stationary random processes.

The instantaneous power spectrum Sx(f,t) is, according

to Ref. (9 ), defined as

Sx(f,t) = R(t , t + )e -12rfr dT 2.11

It is also not physically realizable but it leads to a practical

way of treating non-stationary random data by averaging over a

sufficiently long time interval T . Denoting with (t(7 ) and

Sx(f) the time averaged autocorrelation function and power-

spectral density respectively, one obtains from eqn. 2.11:

lim 1 -12
rX ) T o SX(ft)dt =  x(r)e -ifrT d

2.12

where

RX() lim 1 f Rx(t 7dt
T---*oDRx T2 - 2 ' 2 )dt

S(f)e i 2 f7 df 2.13
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In order to relate the double frequency spectrum Sx(fl,f 2 ) to the

time averaged spectrum Sx(f) we substitute in eqn. o 3 tl t -

t = t + , so that
2 2

i27t(f 2 - f) iWr(f 2 + fl)

Rx(t - 1 , t + = S(fl, )e  e dfldf2
-CO

Therefore from eqn. 2.13

r 1 T/2 C 127t(f 2 - fl) ir-(f 2 + f1l)

x i f x ' 2)e e dfldf2dt

fsf irr (f 2 + fl) T/212rt(f2 fl)

= li (fl f 2 )e - 2e dtdfldf2

lir 0 irr (f2 + f 1 ) sin(f2 - f l)T
ST _ Sx (ff 2 )e (f2 - frjT dfldf 2

2.14

In accordance with Ref. (7), p. 450 it is now assumed

that the double frequency spectrum of the non stationary random

process can be expressed as a sum of regular and singular masses:

Sx(f 1,f 2 ) = Sr(flf 2 ) + Ss(f I ) 6(f 2 - fl)

where Sr (f ,f2 ) has no line masses on the line fl = f2. Inserting

this expression into eqn. 2.14 and noting that

lim sin(f2 - f 1) T 1 for fl f2
T--oo (f2 - f1 )

TT 0 for fl f2

fl + f
one obtains with: 2 f

i27 " fi2rr7

() = Ss(f)e df

and by comparison with eqn. 2.13

Tx(f) = s 3 (f) 2.15
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This important theorem says that the time averaged Autocorrelation

function ( Tr) and the time averaged power-spectral density

S~(f) are uniquely defined by the line masses of the double

frequency spectrum along the diagonal fl f2. If these line

masses are zero, then Sx(f) = (7 ) = 0. In the following

section it is shown that such line masses occur when the non-

stationary process can be represented by a stationary random

process modulated by a periodic time function.

2.3 Stationary Random Processes Modulated by a Periodic Time

Function

Consider a sample .function from a non-stationary random

process

z(t) = A(t)x(t) 2.16

where A(t) is a deterministic periodic time function and x(t)

a sample function from a stationary random process.

We write the Fourier series for A(t) with the basic frequency f

in the form

a ik2rf t
A(t) = cke 2.17

A(t) must be real since it represents a physical quantity, so that

ck = ck and we can write eqn. 2.17 also in the formk -k

(t)f = Ck e

Applying the first part of eqn. 2.3, one obtains for the auto-

correlation function

R ( 12f o(-kt I + it 2 )

Rz t 1 2 )= Rx(tlt2F k 1)o kl
2.18

Introducing as before t1 = t - 7/2, t2 = t + 7/2 and considering

that Rx(t,r) is independent of t, since x(t) is the sample function
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of a stationary random process, eqn. 2.18 assumes the form

00 a 127rf (1 - k)t + (1 + k)X
Rz( T,t)= Rx() =  C ck e

2.19

Time averaging the autocorrelation function according to eqn. 2.13

and considering T/2

lim 1 12fo(1 - k)t 1 for 1 = k

T e  dt = O for 1 k

one obtains

a i2frfokT
Rz( ) = Rx(t") , ck e 2.20

k = -

From the first part of eqn. 2.4 one obtains for the power spectral

density

Sz 12) = O  jCp S\ 2 ( 2 1- f - f(-j+p

2.21

The time averaged spectral density, according to the theorem

proven in section 2.2, is equal to the line mass of the double

frequency spectrum along the diagonal fl = f2, so that with j = p and

f+ = f
2

s0(f) = cjc S (f 2.22

The same result can also be derived by inserting eqn. 2.20 into

eqn. 2.12.
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3. Response of Time-Varying Linear Systems

In Section 2.4 of Phase I Report the response auto-

correlation function and the response power spectral density

were given in terms of the time variable impulse response function

and of the time variable frequency response function. It was noted

that numerical solutions would be very difficult since in general

neither the impulse response function nor the frequency response

function are given analytically.

Following some remarks by Sveshnikov in Ref. (8), p. 135

the problem is here reformulated by introducing the response y(f,t)

of the linear system to an excitation e i 2 7 f t where the system is

assumed to be at rest in its equilibrium position at the origin

of time. It is shown how input-output relaticns between correlation

and spectral functions can be expressed in terms of the particular

solution y(f,t).

3.1 General Non-Stationary Random Input

The response y(t) of a time varying linear system with

an infinite operating time is given by

y(t) = h(r,t) x (t -r)dr 3.1

Physical realizability requires that the impulse response function

h(r;t).= 0 for 7<0.

Stability of the system requires that

The input x(t) applied to the system at time t -7 can be either

a deterministic function or a sample function of a stochastic

process.

Assuming a harmonic input

i27ft
x(t) = e 3.2
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the output, according to eqn. 3.1 is

~ i27rf(t - )

y(f,t) = h( ,t)e dT 3.3

which can also be written as

i2rft
y(f,t) = H(f,t)e 3.4

0 -i2wf 7

with H(f,t) = h(-T,t)e dTr 3.5

For a general input x(t) we write the Fourier transform inverse

0 12fft
x(t) = e X(f)df 3.6

Since the response to the input ei2rft is y(f,t), see equation

3.2 and 3.3, one can write the response to the input x(t) in the

form

y(t) = fy(f,t)X(f)df 3.7

x(t) and y(t) are physical qualities and, therefore, real. From

eqn. 3.6 it then follows that X(f) = X*(-f) and from eqn. 3.7 that

y(f,t) = y*(-f,t). The latter equation can now also be written as

y(t) = f  y *(f,t)X*(f)df

Defining correlation functions and power spectral densities

according to eqns. 2.1 to 2.4 and inserting eqns. 3.6 and 3.7

one obtains:

R(tlt 2 ) = f y* (ftl)y(f4t2)Sx(f3f 4)df3df4 3.8

Rxy(tl,t 2 ) =ff (f4',t2) e 1Sx(f 3, f4 )df3df4 3.9
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Sy (fl f 2) ffs ei12fflt 1 (f )dt

e-1 2 f2t2 y(f4,t2 )dt2  df3df4

3.10

S x(f 1 'f 2 ) fSx 1fs4) e y(ft)dt df4
3.11

The time dependent mean square response, which gives in many

applications adequate information, is obtained by setting in

eqn. 3.8 tI = t2 - t. Thus

a 2(t) = R(t,t)= ffy(f3,t)y(f4,t)Sx(f3,f )df3df4
-00

3.12

If the input is a stationary random process the double integrals

of the frequencies reduce to single integrals and one obtains

for example for the response autocorrelation function

-00
Ry(tl1 t2 ) = fy*(f,t)Y(f,t 2 )Sx(f)df 3.8a

and for the time variable mean square

y 2 (t) = R(t,t) = y (f,t)y(f,t)S(f)df 3.12a

For constant parameter systems the frequency response function H(f) is

independent of time, so that

i2rft
y(f,t) = H(f)e 3.13
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The mean square response is then given by

Oy (t) = R(t,t) = ffH(f 3)H(f 4)e (3 S (f ,f 4 )df 3 df 4

3.14

and is time variable. For stationary random input this reduces

to the time invariable mean square response

2 = R(0) = H (f)H(f)SX(f)df 3.15

-00

For time variable systems the particular solution

y(f,t) has to be usually evaluated numerically. It is, therefore,

preferable to avoid complex arithmetic in the numerical algorithm.

Since the system is linear, the response can be expressed as

y(f,t) = yc(f,t) + iys(f,t) 3.16

where yc(f,t) and ys(f,t) are the responses to the inputs cos2rft

and sin2rft respectively. By expressing the Fourier transform

of a sample function by

X(f) = X1 (f) + iX 2 (f)

and then applying the definition 2.4

one can easily show that the power spectral density can be expressed

by

Sx(flf 2 ) = SxR(fl,f 2 ) +iSxi(flf 2 ) 3.17

with properties

SxR(f 1 f 2 ) = SxR(-f1'-f 2 ) 3.18

SxI(f 1 'f 2 ) = -SxI(-f1'-f2 ) 3.19
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00

R y(tlt 2 = / {Yc(f 1't0)Yc(f2't2)

+ s(fltl)Ys(f 2,t 2) SxR(flf2)dfldf2

+f{ YS(fitl)Yc(f2't2) 3.20

- yc(f ,t)Ys(f,t 2 ) Sxl(f 1 'f2)dfldf2

xy( t1 ' ) = J2 ff (2't 2)cos 27rft

+ ys (f2t2)sin 27rflt1  SxR(flf2)dfldf2
00 3.21

+f{ yc(f 2 't2 )sin 2flt 1

- Ys(f 2t2)cos 2rf lt1 Sxi(flf 2 )dfldf2

For stationary random input equation 3.20 reduces to the single

integral

R (tl,t 2 ) = YC 0 (f/ty lc(fIt 2 ) + Ys(ftl)ys(ft 2 )}1 S x(f)df

3.22

The time variable mean square is then given by

a 2 (t) = R (t,t) = f{yc2(f,t) + ys2 (f,t)} S(f)df

-00 3.23

an expression derived by Sveshnikov in Ref. (8), p. 136.
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3.2 Modulated Stationary Random Input

It is now assumed that the input can be represented

by eqn. 2.16 and 2.17 so that the input is a stationary random

process modulated by a periodic time function. In section 2.3

it had been shown that such a random process leads to a special

kind of double frequency power spectrum with line masses along

the diagonal fl = f2, see eqn. 2.21, so that an average power

spectral density and an average autocorrelation function different

from zero exist. Substituting the input spectrum eqn. 2.21

into eqn. 3.8 for the response autocorrelation function, one

obtains

R f k (* ~ 1 + f -fo(k + 1 )

Ry(tl' t2) 1'1 2  k= E- CkCi S 2

d(f2 f - fo(-k + 1)) dfldf2

By virtue of relation 2.8 the above expression reduces to

R (tl,t2 ) =- c 1 f yCk(f1 "tl)Yfl + f (1 - k)} Sx(f - fok )df IY k-.. _0 1 ;0 k -- 000

With the substitution fl - kfo = f the expression further

simplifies to

00

R (t - = l, CkCl yI(f + kf),t1 Yff + if ),t2 Sx(f)df
k=l; O k -1=2

3.24

From eqn. 3.4:

12r(f + if )t 2
clY'(f + if ,t 2 ) = clH(f + If,t2)e fo)t

1 =- o=
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Because of eqn. 2.17 the left hand side of this equation is the

response to the input

12ift
A(t)e 3.25

Denoting this response by YA(f,t), one obtains finally

R y(tlt 2) = f Y(ftl)YA(ft 2 )Sx(f)df 3.26
-00

This equation has the same form as eqn. 3.8a for stationary

random input, the only difference being that in case of a modulated

stationary random input the response YA(f,t) to A(t)ei2 rft is to

be used instead of the response y(f,t) to ei2 ft

The time variable mean square is now

a 2(t) = R (t,t) = (f,t)YA(f,t)S(f)df 3.27
-00

and corresponds to eqn. 3.12a.

In real form equations 3.22 and 3.23 can be used, whereby merely

y (f,t) and ys(f,t) must be replaced by the responses YcA(f,t);
YsA(f,t) to the inputs A(t) cos 2rft and A(t) sin 2rft respectively.

From a computational point of view it is of importance that a

non-stationary random input of the type considered here can be

treated in the same way as a stationary random input.
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4. Methods of Approximate Solutions

In Phase I Report the blade angle of attack taken as an

average over the blade span, had been assumed to represent a

stationary stochastic process, and the aerodynamic loads on the

flapping blade had been determined by modulating this stationary

process with a periodic time function. In a more sophisticated

theory the blade angle of attack will appear already as a.modulation

of a stationary stochastic process which has to be defined by the

atmospheric turbulence penetrated by the aircraft at constant

flight speed. From a measurement point of view it is almost a

necessity to assume the input to be a modulated stationary

stochastic process, whereby the underlying stationary process

can be measured with respect to its power-spectral density or

correlation functions. In contrast, the power-spectral densities

of non-stationary processes cannot be measured in principle

and the measurement of their correlation functions requires a

large set of sample functions, usually not available. The basic

assumption with respect to the stochastic structure of the input

made in this report is for lifting rotors from a physical point

of view plausible, from a measurement point of view almost

required, and froma mathematical or computational point of view,

as shown in the preceding sections, a very great simplification.

The three approximate methods discussed in the following are all

based on this particular assumption for the stochastic input.

The presentation is further limited to a single degree of freedom

linear system. For the actual lifting rotor more than one

degree of freedom should be considered, whereby input and

response would appear in matrix form and where the problem of

cross correlation functions between the various degrees of

freedom would occur, as discussed in Phase I Report. Finally,

the actual lifting rotor description includes non-linearities

which if small could be considered in the perturbation theory,

but which would render the general theory presented herein

inapplicable.
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4.1 Solution Based on Functional Relation Between Input and

and Output Double Frequency Spectra

To illustrate the method, we will consider the approxi-

mate differential equation for blade flapping, derived in Phase I

Report **

+ (c1 + alsint)4 + (c2 + a2 cost)B  = (c3 + a3sint)& 4.1

Here U , the blade angle of attack averaged over the blade span,

is assumed to represent a stationary random process. The right

hand side of eqn. 4.1 is then a modulated stationary process and

represents the input to the blade flapping equation. In general

the factors for 4 (damping of the flapping motion), for 0 (stiffness)

and for U can also contain other terms of the respective truncated

Fourier series.

Taking the Fourier transform on both sides of eqn. 4.1 and denoting

the Fourier transform of # by B, that of a by A, one obtains,

as shown in Phase I Report

-(2rf2)2B(f2) + c12if2B(f 1 ) + air (f2 - )B(f2  2

- (f2 + )B(f2 + ) H + c2B(f2) + B(f2 - :) + B(f2 +

a3  1 1
c3 (f2) + ~- A(f2 2- - + A(f2 + .2

Taking the conjugate complex of this equation and substituting

fl for f2, multiplying the two equations and taking the mathematical

expectation of this product leads to a lengthy functional equation

between the known power-spectral density for the angle of attacka

0 for fl f2E A (fl)(f2 'J
S_(f) for f = f2 = f

and the power spectral density for the flapping angle

E [B*(f 1 )B(f2 )] = S

**In later sections constants a, and a, are replaced by di and d2
respectivelyaand the input modulatin function c3 + a3 sint is

replaced by -0 + b sint.
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For the particular case of eqn. 4.2 the response power spectrum

Sp (fl,f2) consists only of line masses along the lines f = f2
and f= - . If higher order terms of the truncated

Fourier series in the coefficients of , f and & in eqn. 4.2

are considered, the response spectrum So (fl,f 2 ) contains also

line masses along the lines f f2 = n , where n = 1,2...2 2r '
up to the highest order of the truncated Fourier series.

Replacing f = kAf, where Af is a small frequency interval

and k a discrete variable with values k = 1,2,...m, the functional

equation for Sp (fl,f 2 ) can be replaced by a system of complex

linear equations. Since from physical considerations

Si (klf, 1af) -- O

for sufficiently large k and 1, one obtains a finite number of

equations to compute the values So (kAf, lAf) for all discrete

values of k,l, for which So is assumed to be different from zero.

The problem is now reduced to the inversion of a large

number (in the order of many hundred) of linear equations for

complex variables, having complex coefficients. In Phase I

Report the relations between the line masses on the diagonal,

f f2 and the line masses on the other two lines, fl f2 = 2

had been neglected, and only a relation between the line masses

on the diagonal line retained. This leads to a real system of

equations with real unknowns. Since submitting Phase I Report

it was found that this incomplete system of equations does not

yield approximation, since not even the trend with increasing

magnitude of the periodic coefficient a,, a2, a3 in eqn. 4.1

is properly established by the incomplete system of equations.

It was subsequently attempted to solve the complete

system of equations for the complex unknowns, however for the

numerical input data considered (see Section 5), the numerical

experience showed that the complex coefficient matrix is ill

conditioned and not directly suited for standard iterative tech-

niques. The program so far completed stores only non zero elements
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and for any preassigned value of m generates its own complex

coefficient matrix which is by a standard subroutine split into

real arithmetic. This representation of a complex matrix in

real form takes practically twice the original core storage

but was found to be computationally more convenient and easily

amenable for double precision. It seems necessary to generate

a preconditioning matrix, by a trial and error procedure.

This aspect of the problem, using preconditioning

matrices, has not yet been exploited. It is unlikely that the

preconditioning operation and the subsequent inversion of the

large matrix will be possible without a considerable amount of

computer time per case. Of physical significance and subject

to direct measurement is only that portion of the double frequency

spectrum So (flf 2 ) consisting of a line mass along the diagonal

fl = f2 since, according to Section 2.2, only the diagonal line

mass contributes to the time averaged power-spectral density.

However, contrary to the assumption made in Phase I, the relations

involving the line masses on the non-diagonal lines cannot be

neglected in the computation.
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4.2 Solution Based on the System Response to Deterministic Inputs

The response autocorrelation function Rv(tlt 2 ) can

be either computed from eqn. 3.24, using the response y(f,t)

to the input ei2 rft , or it can be computed from eqn. 3.26,

using the response YA(f,t) to the input A(t)ei27ft, the actual

computations to be performed with the equivalent real form

equations. The latter approach takes less machine time but does

not economically permit a parametric variation in A(t). For the

first approach the response calculations are independent of the

input modulating function A(t) and variations in this function

are reflected merely in the double summation of eqn. 3.24.

In either case a deterministic response analysis over

a sufficiently wide frequency and time range is required.

Once the responses are determined, the autocorrelation function

Ry(tlt 2 ) or the mean square response R (t,t) requires merely

a single integration over the applicable frequency range.

In performing the numerical response computations the

computer time involved should be an important factor in selecting

a suitable one-step or a multi-step method. Truncation and

numerical instability problems should not affect the reliability

of the computations over sufficiently large time intervals.

It is presumed that the round off errors can be checked with

a double precision arithmetic - a provision easily available

in present day.computers.

For second order differential equations as in our blade

flapping problem, it is possible by a standard substitution

(Ref. 12, p. 227) to obtain another equation of the same order

but without the first derivative terms. A multi-step method

known as Noumerov's method (Ref. 13, p. 137 and Ref. 14, p. 301)

was used for some sample runs to compute the blade flapping

response for an input cos2rft, beginning with zero displacement

and rate of displacement for t = 0. This method has no stability

problems and the truncation error is of the order of O(h6 ),

Ref. 14, p. 301. In addition to the known zero displacement

and displacement rate conditions the method requires one extra
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starting value of the displacement which was computed from

Taylor series. On an overall basis this multi-step method

took more machine time than the one-step method described

below.

This one-step method was the Runge-Kutta method of

fourth order specially suited to second order differential

equations, giving a truncation error of order O(h5). The

program is based on the algorithm given in Ref. 12, page 238.

Being a one-step method it is self starting without any

stability problems. Numerical comparisons have been made with

reduced step size and in some other cases with the perturbation

theory. This rather heuiristic approach toward truncation and

round off problems indicates that the computational errors are

too insignificant to affect the reliability of the response

calculations.

After numerically computing the deterministic responses

over an adequate range of frequency and time the quadrature

operations based on the Simpson rule is carried out in accordance

with equation 3.24 or 3.26.

Numerical experience thus far gained seems to indicate

that with computer time of 40-45 minutes on machines comparable

to the IBM 360-50 Model, a reasonably accurate time dependent

mean square response can be obtained. This assumes that the

periodically varying damping and stiffness functions are

explicitly given in the form of Fourier series. Otherwise a

separate subroutine has to be added to perform such a Fourier

analysis.
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4.3 Perturbation Method for Linear Time Variable Systems with

Small Time Varying Parameters

A drawback in a complete numerical approach is the

considerable amount of machine time in computing the responses

for inputs cos wt and sin wt over an adequate range of the

discrete frequency parameter w . Approximate analytical methods

on the other hand provide solutions in terms of the variable

frequency w and it is possible to make a qualitative study of

the response with or without including transient effects.

To evaluate the correlation function of the response

by the perturbation method, the solution to known deterministic

inputs is expressed as a power series in C , a perturbation

parameter which in our problem is only a mathematical artifice.

We have an exact solution when E = 0 but the solution we seek

is obtained by letting = 1. The response of the time variable

system is then calculated by repeatedly solving the associated

constant parameter system for known inputs and using the principle

of superposition. Finally, the computation of the response

correlation function comprises single quadrature for stationary

inputs and double quadrature for non stationary inputs. (See

equations 3.8 and 2.6)

A direct Fourier inversion of the correlation function

to obtain the spectral description of the response, equation 2.4,
involves computationally inconvenient quadrature operations

which can be avoided if the time variable parameters and the

input modulating function are periodic as in the case of a

flapping blade. In order to make use of the periodicity of the

system parameters, we express the stochastic response 8 (t)

as a power series in e and then obtain the double frequency

spectrum S ( W1' 02) according to equation 2.4. This latter

perturbation scheme is analogous to the one employed for

non linear stochastic problems, Ref. 2, page 272, except in

the present blade flapping problem the excitation is a special

kind of a non stationary process for which the spectral density

function comprises series of line masses, equation 2.21.

The response spectrum same as the input spectrum also contains

line masses. Therefore, for the physically realizable time
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averaged response spectrum one needs to consider only the

diagonal terms of the response spectrum.

4.3.1 Computation of Response Correlation Function

Consider a time variable parameter linear system

typified by the equation

n n n-j
F(P) + E dsi + d sin( gt + j)t 4.3

where d"
dtn

With the forcing function f(t) for which the spectral density

function S f((, w 2 ) or the correlation function Rf(tlt 2 ) is
known, equation 4.3 takes the form

F(P) = f(t) .4

Now introduce two more linear operators

n n n-j
L(8) = + cj 4.5

j= 1

and

N(P) = L(B) - F($) 4.6

Icjl >> I dj sin( go t + j)l 4.7

it is possible to introduce a perturbation parameter e such

that (10, 11)

hB(t) = e0 (t) + E8 1(t) + e2 P2 (1) +... 4.8
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Instead of solving equation 4.3, we now seek a solution to the

problem

L( ) = f(t) + EN(P) 4.9

for £ = I.

Substituting the power series expansion, equation 4.8, in

equation 4.9 and equating the coefficients having the same

powers of e one gets the following infinite system of equations:

L( Po) = f(t) 4.10

n n-i
L( 1) = - dj sin( Qot + 0 )] 4.11

n n-j
L(8k+1) = 1 d sin( t + 0 ) . 4.12

In equation 4.4, when the random input f(t) is replaced by a

deterministic harmonic forcing function ei6t, the response

y( w,t) can also be expressed as

Y(w,t) = yo(( t) + yl (  ,t) + 2 (t) + ...

The solution of equation 4.10 with f(t) replaced by ei W t gives

yo( ,t) = H(w)e i t  4 Bj(j) e 4.13
j=

where (i are the roots of the equation

n

(i)n + c (i)n- = 0

and the constants B (w) are to be evaluated by satisfying the

n zero initial conditions of the system. The first part of

the response in equation 4.13 refers to the steady state
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solution and the term under the summation sign refers to

transient solutions which can be neglected for stable systems

assuming one is only interested in the steady state. If

transients are of interest, they can always be superimposed

to the stochastic solution. Henceforth, we will consider only

steady state solutions.

When yo(jw,t) and its n-1 derivatives are substituted

in equation 4.11 and noting that the right hand side deterministic

input is periodic, it is possible to solve for yl( W ,t) in

closed form. Similarly, y2 (,t) y3( ,t)...etc. have to be

solved if correction terms of order more than one are needed.

As the system is linear one can set

y( W,t) yo (wt) + y 1 (w ,t) +...etc. 4.14

The correlating function R (t I 2 ) is then obtained from the

relation 3.8. y0 (cj,t) and ys(,jt) in equation 3. 2 0, respec-

tively correspond to inputs coswt and sinwt or the real and

imaginary parts of y((j,t) in equation 4.14.

In the present rigid blade flapping problem the forcing

function in equation 4.4 is a separable non stationary process

of the type of equation 2.16, where the input modulating

function is periodic. Therefore, the spectral density function

of the input is given by equation 2.21. In the computation of

the response correlation function, the double integral in

equation 3.8 reduces to a series of single integrals depending

upon the number of Fourier terms in the input modulating

function. Another approach which is better suited for a

specific problem involving no parametric study of the input

modulating function and especially when it is not periodic

is to compute yA (W ,t) instead of y(w,t) and then use relation

3.26 to compute RE (tl,t 2). The perturbation scheme to compute

yA( ,t) is exactly similar to the one described earlier.

The only difference is that the forcing function now is a

product of the input modulating function and e
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For any input modulating function A(t),yAo( W ,t),

YA1(W,t)**YAk+1( ,t), etc. can be obtained from equations

YAo(W,t) =J h( T)A(t - T )e i w ( t - )dr 4.15

YA1(Wt)= f h( T)F 0 (t - T )dr 4.16

YAk+1 (,t) =fh(T)Fk(t -T)d7 , etc. 4.17
-00oo

where Fo(t),...Fk(t) represent the right hand side deterministic
functions in equations 4.11 and 4.12 after replacing the stochastic
responses o (t),.. k(t) by the deterministic responses yAo(w,t),.

yAk( w,1), etc. When the input modulating function is periodic,
convolution integrals in equations 4.15, 4.16 and 4.17 can be
evaluated in closed form. As the system is linear

yA ( ,t) _ YAo( ,t) + YA1
( W t) +.., etc. 4.18

We note in passing that when the input is a stationary
process, y(w,t) and yA( ,t) are identical.

4.3.2 Response Spectral Density Function

Taking the Fourier transform of equation 4.8 and then
using relation 2.4, one gets

S. ((wIW 2 ) = SR (, 1 2) S+ S o 1 j 2) + S81 1 ' 2)

2
+...* 4.19

We are interested only in S ( w, w) which for the specific
type of input considered in this report corresponds to the
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physically realizable time averaged power spectrum ().
By virtue of relation 2.15, 3.18 and 3.19, S8 (u) can be
expressed as

sg (W)= Sp (6 )

SS f( ' ) + 2EReal S 1(  
) + 4.20

Fourier transform of equation 4.10 at frequency j gives

B o( ) ( 1 (o )'(w )

Application of equation 2.4 gives the spectral density functionin the form

S ( ' 2 ) = H()H( ( 2 )Sf( Wj1 2) 4.21

Similarly the spectral density functions for 1(t),...
.k+1(t), etc. can be expressed as

Sk+11' 2 = 1/4 J (-1)nJ dl(i)2n-1-ei(...e)
s6 ( 

482) 
1 J- 1 

'
(W1 - ao)n-J(w

2 - o)n-1 SB ( 1 - ,  2 " o)

-1/4 ~ 1 1(-1)n-Jdjdl(i)2n-l-Jei(J 
+ 01)

( 1 + 2 - o)n-lj S f (i + S 0 2 o
n n

-1/4 _- 1)nd dl(i)2n-l-Je-i( O + Ci)

S 0 )n-j( '2 0+ o)n-1 S k O' , 2 +D 0o)
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n n n-3 i2n-1-i 1( + 01)+1/4 C (-1)nJd dl(i) e +

( 01 ) n-j 2 + o))n-ll S ( 1 + Q 0,j 2 +

4.22

Now, take the Fourier transform of equation 4.12 at frequency w62
to yield

1 n k+1(i)n-J( 2  n- j k2 o n - j e i

-(i)n-j 2 + o)n-j .k(' 2 + _)n-Je-i O j]

Multiplying both sides with, -k(w1 ) and then taking the

expectation, equation 2.4, one gets

S1 1 C2) = H(CJ2) 1/2 S k( 1")2 - o ) J 1 ei@jd (i)n-j-1

k k+1kJ=1 j

( -2 ~) n -j -1/2 S wk 0( ' 2 + s,) ( i)n-j-(2 + o n -j

4.23

With the help of relations 4.21, 4.22 and 4.23, the response

spectral density function can thus be obtained to any desired

order.
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5. Numerical Examples

The equation studied by the perturbation and numerical

methods reads

+ (cl + dl sin Q0 t) A + (c2 + d 2 cos DO t) . = A(t)a(t) 5.1

Selecting a time unit for which the rotor angular velocity-Q = 1

and substituting 01 , d = , 2 = 2 c01 , d2 = d i and

A(t) = C1 + 2dI sint, an approximate blade flapping equation

valid up to moderate advance ratios is obtained. (For details

of equation 5.1 refer to Phase I Report, page 17). For practical

rotors the non dimensional-inertia number y varies from 2-10,

therefore we have assumed a typical value of Y = 4 in the numerical

examples. Note also that the system parameters cl and d1
which are linearly related to the advance ratio.p also appear

in A(t). However, the system parameter dI is varied from 0 to 1

only in the left hand side of equation 5.1 without changing

the right hand side deterministic function A(t). The computational

scheme with different values of dI is thus associated with two

specific functions

A(t) = 0.5 + 0.4 sint

and

2.
S-- (h) = 2

oS 0.25 + 2

As the function A(t) which corresponds to the actual physical

system at an advance ratio of 0.3, is not simultaneously changed

along with the system parameter dl, the computed values of the

time variable mean square response RE (t,t) and the time averaged

response spectra S6 (W) correspond to the actual blade flapping

problem only for dI = 0.2. The intent of this report is not

so much to carry out an extensive parametric study of . and p

for different input spectra which are of interest in the atmospheric

turbulence study but to establish the range of validity of the
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perturbation method with regard to p and then within this

admissible range develop a computational scheme to compute the

time variable mean square response and the time averaged spectra

of the flapping oscillations. With the computer program written

in Fortran IV language, it is possible to evaluate R (t,t)

for any desired values of Y and P when the stochastic input

d(t) has a known spectral density function Sa (w).

Now, coming to the actual description of the computational

scheme and presentation of computer results, it is convenient

to describe them in three stages:

In the first stage, the range of validity of the perturbation

method with respect to the advance ratio p has been established

by comparing the perturbation system responses with that of the

Runga-Kutta method results. The computer program, for any

preassigned values of c, and dl, gives the system responses

according to these two Rethods provided the input to the

system is of the form (-+ b, sint)e t . Numerical results

presented in Figures la to lc refer to three typical frequency

values of 0.5, 1 and 1.5 with constants a° = 2 and bI = 0.

A comparison of system responses, Figures la to ic, indicates

that up to di = 0.7 (or approximately p < 1) the perturbation

scheme should provide reasonably accurate results.

In the second stage, the time variable mean square

response R (t,t) is evaluated according to equation 3.27,

by integrating'the product of the spectral density function

Sy (0) and the square og the absolute value of the system

response to the input (- + b1 sint)e
i t . The limits of

integration in equation 3.2 have been truncated to -3 to

+3. This finite frequency range of integration seems to be

adequate for applied purposes because in the numerical examples

discussed here the value of the integrand for IWl > 3 is less

than 10- 3 . The quadrature routine is based on Simpson's rule

with a stepsize of 0.1. Figure 2 refers to two cases -

stationary and non stationary inputs to a constant parameter

system. The first case corresponds to the blade flapping

equation at zero advance ratio and as expected, the mean
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square response, dotted lines in Figure 2, are time invariant.

The second case, though not directly relevant to the present

blade flapping problem is an analytical model of considerable

interest where the mean square response is time dependent due to

non stationarity in the input. The strong time dependency of

the mean square response, full lines in Figure 2, is due to the

fact hat the time invariant or the constant part of the input

with - = 0.5, is not small compared to 0.4 sint, the time

variable part. For a spectral description of such a separable

non stationary process refer to Section 2.3. Figure 3 shows the

time dependency of the mean square response of time variable

parameter systems subject to non stationary excitations. Here

both the time variability of the system parameters and non

stationarity of the input contribute toward the non stationarity

of the response.

The third stage comprises the computation of the time

averaged response spectra according to equations 4.21, 4.22,

4.23 and 4.20. Figure 4 summarizes these numerical results

for different values of the system parameter dI. For two

extreme values of dI , dl = 0 and dI = 0.8, Figure 5 shows the

comparison between the perturbation values and the NASA

conducted simulator results, and Figure 6 also refers to a

similar comparison with dI = 0.2. Considering the discrepancy

in the time averaged input power spectrum between the simulator

study and exact analytical values, Figure 5, and also other

types of errors due to finite filter band width, etc. inherent

to simulator results, the perturbation values within the admissible

range of the perturbation scheme mentioned earlier agree reasonably

well with the simulator results, Figures 5 and 6.
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6. Conclusions

Same as in Phase I Report it is assumed here that

atmospheric turbulence produces an input stochastic loading of

the lifting rotor blades in forward flight which is of the

separable kind and consists of a stationary random process

modulated by a periodic time function. Since submitting

Phase I Report the problem of random blade flapping has been

further studied and the following new results have been

obtained:

6.1 The approximate method of solving the functional relation

between input and output double frequency power spectral

densities for the flapping rotor blade in forward flight,

tentatively suggested in Phase I Report, has been checked

against simulator results. While the method gives the

correct order of magnitude effects of moderate advance

ratio on the response power spectral density, it cannot

be used as a quantitative estimate of these effects.

6.2 In the approximate method of 6.1 all off-diagonal terms

of the double frequency input and output power spectral

densities were neglected. A more elaborate approximation

was tried, including the off-diagonal line masses. The

resulting system of linear equations has a complex coeffi-

cient matrix which turned out to be ill conditioned and

not directly suited for iterative techniques.

6.3 Solutions have been'developed based on the system response

to deterministic inputs. Such responses can be computed

with standard numerical methods like the Runge-Kutta

method. The deterministic input consists of a harmonic

forcing function with or without being modulated by the

right - hand side deterministic time function. If the time

variability of the system parameters compared to the asso-

ciated constant parameters is not too large, the deterministic

response can be obtained with adequate accuracy also by

the perturbation method. In either case the response

autocorrelation function or the time variable mean square
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response can be computed by a single integration over the

applicable frequency range.

6.4 A perturbation method has been developed in two forms.

According to the first form the deterministic responses

are computed by adding to the solution for the associated

constant parameter system corrections from the time varying

parameters. The deterministic responses thus obtained

.are then inserted into the appropriate integrals over the

applicable frequency range, representing autocorrelation

function or time variable mean square.

According to the second form of the perturbation method

the response power spectral density for the associated

constant parameter system is first computed and then improved

by adding the necessary corrective cross spectral terms.

While the first form of the perturbation method is best

suited for the computation of the time variable mean square

response, the second form of the perturbation method lends

itself particularly well to the computation of the time

averaged response power spectral density.

6.5 The numerical examples presented herein have the main

purpose to determine the range of applicability of the

perturbation method and to evaluate for some typical

assumed cases the stochastic structure of the blade

flapping response. The results of this method are compared

to the results of NASA conducted simulator studies. Also

some typical response time histories obtained with the

perturbation method are compared to those obtained with

the more elaborate Runge-Kutta numerical integration

method. On the basis of the numerical examples treated

it can be concluded that the perturbation method of

determining blade responses to stochastic inputs is

approximately valid up to an advance ratio of one in

combination with a Lock inertia number of 4.
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So far the studies were primarily concerned with

questions of methodology in treating time variable

systems under non-stationary stochastic inputs of the

separable type. The methods have been applied to a

simplified approximate differential equation of blade

flapping in forward flight. No effort was made to

predict the stochastic input from a given atmospheric

turbulence structure. Probably such a prediction will

require empirical parameters to be obtained from model

or flight tests. The extension of the studies to multi-

degree of freedom representations of the blades will

require data on cross correlation functions between the

generalized stochastic loads, which also should be based

on experiments. A rather straightforward extension of

the present studies concerns a more accurate representation

of the blade in flapping or flap-bending with more complex

expressions for the time variable damping and stiffness

terms. Such an extension together with the computation

of typical random response data over a wide range of blade

parameters and stochastic inputs is presently in work.
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